Note
This guideline provides advice of a general nature. This statewide guideline has been prepared to promote and facilitate standardisation and consistency of practice, using a multidisciplinary approach. The guideline is based on a review of published evidence and expert opinion.

Information in this statewide guideline is current at the time of publication.

SA Health does not accept responsibility for the quality or accuracy of material on websites linked from this site and does not sponsor, approve or endorse materials on such links.

Health practitioners in the South Australian public health sector are expected to review specific details of each patient and professionally assess the applicability of the relevant guideline to that clinical situation.

If for good clinical reasons, a decision is made to depart from the guideline, the responsible clinician must document in the patient’s medical record, the decision made, by whom, and detailed reasons for the departure from the guideline.

This statewide guideline does not address all the elements of clinical practice and assumes that the individual clinicians are responsible for discussing care with consumers in an environment that is culturally appropriate and which enables respectful confidential discussion. This includes:

• The use of interpreter services where necessary,
• Advising consumers of their choice and ensuring informed consent is obtained,
• Providing care within scope of practice, meeting all legislative requirements and maintaining standards of professional conduct, and
• Documenting all care in accordance with mandatory and local requirements

Dose and Indications
1 mg = 1000 microgram = 1unit

Management of Neonatal Hypoglycaemia

Intravenous Bolus, Intramuscular, Subcutaneous
200 microgram/kg (maximum of 1000 microgram) as a single dose

Intravenous Infusion
Commence with 10 microgram/kg/hr to 20 microgram/kg/hr and titrate up to a maximum of 50 microgram/kg/hr
Preparation and Administration

Intravenous Bolus, Intramuscular, Subcutaneous

Add 1 mL of the diluent provided (water for injection) to the 1 mg (1000 microgram) vial; this will give a resulting solution of 1000 microgram/mL

<table>
<thead>
<tr>
<th>Dose</th>
<th>100 microgram</th>
<th>200 microgram</th>
<th>400 microgram</th>
<th>600 microgram</th>
<th>800 microgram</th>
<th>1000 microgram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.1mL</td>
<td>0.2mL</td>
<td>0.4mL</td>
<td>0.6mL</td>
<td>0.8mL</td>
<td>1mL</td>
</tr>
</tbody>
</table>

Intravenous Infusion

Give via a dedicated line. Do not administer via the same line as parenteral nutrition due to know incompatibility with calcium containing solutions.

Select the strength required based on the weight of the infant in the context of any fluid restrictions. Glucagon Concentration Selection Table can be found on the following pages of this guideline to assist prescribers to gauge which strength is best for the patient.

The three standard strengths used are:
- Glucagon 40microgram/mL
- Glucagon 80microgram/mL
- Glucagon 160microgram/mL

Formulae

To calculate infusion rate (mL/hr):

\[
\text{Rate (mL/hr)} = \frac{\text{dose (microgram/kg/hour)} \times \text{weight(kg)}}{\text{Strength (microgram/mL)}}
\]

To calculate the dose (microgram/kg/hour):

\[
\text{Dose (microgram/kg/hour)} = \frac{\text{Rate (mL/hr)} \times \text{Strength (microgram/mL)}}{\text{Weight (kg)}}
\]
Glucagon Concentration Selection Tables

Glucagon 40 microgram/mL

Double dilution to make **25 mL** syringe:

STEP ONE: Add 1 mL of the diluent provided (water for injection) to the 1 mg (1000 microgram) vial; this will give a resulting solution of 1000 microgram/mL.

STEP TWO: Add 1 mL of the 1000 microgram/mL glucagon solution to 24 mL 5% glucose (to a total of 25 mL). This makes a 40 microgram/mL solution.

<table>
<thead>
<tr>
<th>Rate (mL/hr)</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate microgram/kg/hour</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discard remaining solution

Glucagon 80 microgram/mL

Double dilution to make **25 mL** syringe:

STEP ONE: Add 1 mL of the diluent provided (water for injection) to the 1 mg (1000 microgram) vial; this will give a resulting solution of 1000 microgram/mL. Prepare 2 vials.

STEP TWO: Add 2 mL of the 1000 microgram/mL glucagon solution to 23 mL 5% glucose (to a total of 25 mL). This makes an 80 microgram/mL solution.

<table>
<thead>
<tr>
<th>Rate (mL/hr)</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate microgram/kg/hour</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discard remaining solution

Glucagon 160 microgram/mL

Double dilution to make **25 mL** syringe:

STEP ONE: Add 1 mL of the diluent provided (water for injection) to the 1 mg (1000 microgram) vial; this will give a resulting solution of 1000 microgram/mL. Prepare 4 vials.

STEP TWO: Add 4 mL of the 1000 microgram/mL glucagon solution to 21 mL 5% glucose (to a total of 25 mL). This makes a 160 microgram/mL solution.

<table>
<thead>
<tr>
<th>Rate (mL/hr)</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate microgram/kg/hour</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discard remaining solution
Compatible Fluids
Glucose 5%, sodium chloride 0.9%
Glucose 10% has been used

Adverse Effects
Infrequent
Vomiting, paroxysmal insulin secretion and rebound hypoglycaemia

Rare
Hypokalaemia (large doses), allergic reactions, hyponatraemia, thrombocytopenia, hypotension, hypertension, tachycardia

Monitoring
> Blood glucose levels
> If on continuous infusion, consider periodic electrolytes and platelets

Practice Points
> Glucagon is not usual first line treatment of hypoglycaemia; consider in cases of hypoglycaemia refractory to intravenous glucose infusion, or when glucose infusion is unavailable, or in cases of documented glucagon deficiency
> When considering original vial strength and possible patient condition, it is recommended that only 25mL volume infusions are prepared
> Watch for rebound hypoglycaemia. Rise in blood glucose will last approximately 2 hours
> Persistent hypoglycaemia should not be treated with repeated doses of glucagon alone. Glycogen stores in preterm and growth retarded infants are limited and easily depleted
> Evaluate glucose levels prior to each dose
Glucagon
1mg injection

Document Ownership & History

Developed by: SA Maternal, Neonatal & Gynaecology Community of Practice
Contact: Health.NeoMed@sa.gov.au
Endorsed by: Commissioning and Performance, SA Health
Next review due: 23/11/2027
ISBN number: 978-1-76083-496-8
CGSQ reference: NMG037
Policy history:

<table>
<thead>
<tr>
<th>Approval Date</th>
<th>Version</th>
<th>Who approved New/Revised Version</th>
<th>Reason for Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/11/2022 V3</td>
<td>Domain Custodian, Clinical Governance, Safety and Quality</td>
<td>Formally reviewed in line with 5 year scheduled timeline for review.</td>
<td></td>
</tr>
<tr>
<td>6/10/2017 V2</td>
<td>SA Health Safety and Quality Strategic Governance Committee</td>
<td>Formally reviewed in line with 1-5 year scheduled timeline for review.</td>
<td></td>
</tr>
</tbody>
</table>